Adjusted Viterbi training for hidden Markov models
نویسندگان
چکیده
We consider estimation of the emission parameters in hidden Markov models. Commonly, one uses the EM algorithm for this purpose. However, our primary motivation is the Philips speech recognition system wherein the EM algorithm is replaced by the Viterbi training algorithm. Viterbi training is faster and computationally less involved than EM, but it is also biased and need not even be consistent. For this reason we propose an alternative to the Viterbi training – adjusted Viterbi training – that has the same order of computational complexity as Viterbi training but gives more accurate estimators. Elsewhere, we studied the adjusted Viterbi training for a special case of mixtures with relevant simulations ascertaining the theory. This paper shows how the adjusted Viterbi training is also possible for more general hidden Markov models. ∗Estonian Science Foundation Grant 5694
منابع مشابه
m at h . ST ] 1 4 Se p 20 07 Adjusted Viterbi training for hidden Markov models
To estimate the emission parameters in hidden Markov models one commonly uses the EM algorithm or its variation. Our primary motivation, however, is the Philips speech recognition system wherein the EM algorithm is replaced by the Viterbi training algorithm. Viterbi training is faster and computationally less involved than EM, but it is also biased and need not even be consistent. We propose an...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملThe adjusted Viterbi training for hidden Markov models
The EM procedure is a principal tool for parameter estimation in the hidden Markov models. However, applications replace EM by Viterbi extraction, or training (VT). VT is computationally less intensive, more stable and has more of an intuitive appeal, but VT estimation is biased and does not satisfy the following fixed point property. Hypothetically, given an infinitely large sample and initial...
متن کاملAdjusted Viterbi Training. A proof of concept
Viterbi Training (VT) provides a fast but inconsistent estimator of Hidden Markov Models (HMM). The inconsistency is alleviated with little extra computation when we enable VT to asymptotically fix the true values of the parameters. This relies on infinite Viterbi alignments and associated with them limiting probability distributions. First in a sequel, this paper is a proof of concept; it focu...
متن کاملAdjusted Viterbi Training
We propose modifications of the Viterbi Training (VT) algorithm to estimate emission parameters in Hidden Markov Models (HMM) which are widely used in speech recognition, natural language modeling, image analysis, and bioinformatics. Our goal is to alleviate the inconsistency of VT while controlling the amount of extra computations. Specifically, we modify VT to enable it asymptotically to fix ...
متن کامل